Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.508
Filtrar
1.
Rev Med Liege ; 79(4): 230-234, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38602210

RESUMO

The fields of neutrophil and endothelial cell biology are being deeply revised. While lung marginated neutrophils have been identified decades ago, their roles in the healthy adult lung are still contentious. Furthermore, while it is now clear that the lung constitutes an important immunological niche, the role of lung endothelial cells has been neglected so far. A better understanding of the role of short-lived neutrophils in contributing to lung endothelial cell physiology will improve our understanding of lung endothelial cell fate and heterogeneity under homeostasis and inflammation. Furthermore, it will provide new mechanistic insights on lung marginated neutrophil function and crosstalk with endothelial cells and provide robust foundations for devising therapeutic approaches in which endothelial cell (dys)functions are involved.


Le domaine de la biologie des neutrophiles et des cellules endothéliales est en pleine révision. Si les neutrophiles marginés pulmonaires ont été identifiés il y a plusieurs décennies, leur rôle au niveau du poumon adulte sain reste controversé. De plus, alors qu'il est maintenant reconnu que le poumon constitue une niche immunologique importante, le rôle des cellules endothéliales au niveau de ces niches a, jusqu'à présent, été négligé. Une meilleure compréhension du rôle des neutrophiles marginés dans un poumon sain ainsi que de leur contribution à la physiologie des cellules endothéliales permettrait d'améliorer nos connaissances concernant la biologie et l'hétérogénéité des cellules endothéliales en conditions d'homéostasie et inflammatoires. Enfin, un aperçu mécanistique des relations entre les neutrophiles marginés pulmonaires et les cellules endothéliales constituerait une base solide à l'élaboration de nouvelles stratégies thérapeutiques lors de dysfonctionnements de l'endothélium.


Assuntos
Células Endoteliais , Neutrófilos , Humanos , Neutrófilos/fisiologia , Pulmão
2.
Iran J Allergy Asthma Immunol ; 23(1): 115-121, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38485906

RESUMO

Sanjad Sakati Syndrome (SSS) is categorized as a neuroendocrine-related disease due to disorders of the nervous and hormonal systems. Since hormonal changes in these patients may affect the nature and function of the immune system. Thus, in this study, cell count and phagocytotic function of neutrophils were evaluated which may be influenced by changes in the hormonal rate and growth factors. In this study, the neutrophil count value and the oxidative burst were evaluated in six patients diagnosed with SSS and six healthy individuals. There was a significant reduction in the neutrophil count observed in SSS patients compared to healthy controls (37.41±7.93 percent vs. 66.5±6.8 percent). However, there was no significant difference in neutrophil oxidative index between patients with SSS and control subjects (172.33±55.08 vs. 217.00±77.38). We concluded that in patients with SSS, the phagocytic activity of neutrophils was not affected by hormonal changes, while the number of neutrophils and neutrophil-to-lymphocyte ratio (NLR) index were decreased.


Assuntos
Anormalidades Múltiplas , Acrocefalossindactilia , Transtornos do Crescimento , Hipoparatireoidismo , Deficiência Intelectual , Neutrófilos , Osteocondrodisplasias , Convulsões , Humanos , Neutrófilos/fisiologia , Explosão Respiratória , Deficiência Intelectual/diagnóstico , Contagem de Leucócitos , Contagem de Linfócitos
3.
Cell Transplant ; 33: 9636897241228031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353224

RESUMO

The management of granulocytopenia-associated infections is challenging, and a high mortality rate is associated with traditional supportive therapies. Neutrophils-the primary defenders of the human immune system-have potent bactericidal capabilities. Here, we investigated the dynamic in vivo distribution of neutrophil transfusion and their impact on the treatment outcome of severe granulocytopenic infections. We transfused 89Zr-labeled neutrophils in the C57BL/6 mice and observed the dynamic neutrophil distribution in mice for 24 h using the micro-positron emission tomography (Micro-PET) technique. The labeled neutrophils were predominantly retained in the lungs and spleen up to 4 h after injection and then redistributed to other organs, such as the spleen, liver, and bone marrow. Neutrophil transfusion did not elicit marked inflammatory responses or organ damage in healthy host mice. Notably, allogeneic neutrophils showed rapid chemotaxis to the infected area of the host within 1 h. Tail vein infusion of approximately 107 neutrophils substantially bolstered host immunity, ameliorated the inflammatory state, and increased survival rates in neutrophil-depleted and infected mice. Overall, massive allogeneic neutrophil transfusion had a therapeutic effect in severe infections and can have extensive applications in the future.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neutrófilos , Camundongos , Humanos , Animais , Neutrófilos/fisiologia , Taxa de Sobrevida , Camundongos Endogâmicos C57BL , Medula Óssea
4.
Theriogenology ; 219: 22-31, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377715

RESUMO

Breeding-induced endometritis is a physiological reaction to clear the uterus from excess spermatozoa and bacteria after breeding. Cysteine rich secretory protein 3 in seminal plasma (spCRISP3) protects spermatozoa from binding and destruction by uterine PMNs, but it is not clear if this involves all sperm and bacteria, or if it is selective to a sub-population of live sperm. The objective of this report was to determine if spCRISP3 (1) is selective in its suppression of PMN-binding to sperm based on viability of spermatozoa, (2) protects bacteria from binding to PMNs, and (3) to determine the localization pattern of spCRISP3 on viable and dead sperm. Semen was collected from five stallions and each ejaculate was divided into (1) live and (2) snap frozen (dead) sperm. Two distinct sperm populations were confirmed by DNA fragmentation and membrane integrity assays. CRISP3 was purified from pooled seminal plasma, and binding of PMNs (isolated from peripheral blood) to the two sperm populations and E. coli was evaluated with flow cytometry in the presence of spCRISP3. In addition, localization of spCRISP3 on live and dead spermatozoa was determined by immunocytochemistry. Comparisons between treatments were analyzed using a one-way-ANOVA and Bonferroni's comparison test, or Kruskal-Wallis ANOVA if not normally distributed. spCRISP3 significantly suppressed binding of PMNs to live spermatozoa (p < 0.0001) but had no effect on dead sperm or bacteria (p > 0.05). Immunocytochemistry confirmed binding of spCRISP3 to live, but not dead spermatozoa. It was concluded that a selective interaction between spCRISP3 and live spermatozoa may be part of a biological mechanism that allows safe transport of viable spermatozoa to the oviducts, while enabling dead spermatozoa and bacteria to be eliminated in a timely fashion after breeding.


Assuntos
Neutrófilos , Sêmen , Feminino , Cavalos , Animais , Masculino , Sêmen/fisiologia , Neutrófilos/fisiologia , Cisteína , Escherichia coli , Espermatozoides/fisiologia
6.
JCI Insight ; 9(4)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38290007

RESUMO

A robust, sterile inflammation underlies myocardial ischemia and reperfusion injury (MIRI). Several subsets of B cells possess the immunoregulatory capacity that limits tissue damage, yet the role of B cells in MIRI remains elusive. Here, we sought to elucidate the contribution of B cells to MIRI by transient ligation of the left anterior descending coronary artery in B cell-depleted or -deficient mice. Following ischemia and reperfusion (I/R), regulatory B cells are rapidly recruited to the heart. B cell-depleted or -deficient mice exhibited exacerbated tissue damage, adverse cardiac remodeling, and an augmented inflammatory response after I/R. Rescue and chimeric experiments indicated that the cardioprotective effect of B cells was not solely dependent on IL-10. Coculture experiments demonstrated that B cells induced neutrophil apoptosis through contact-dependent interactions, subsequently promoting reparative macrophage polarization by facilitating the phagocytosis of neutrophils by macrophages. The in vivo cardioprotective effect of B cells was undetectable in the absence of neutrophils after I/R. Mechanistically, ligand-receptor imputation identified FCER2A as a potential mediator of interactions between B cells and neutrophils. Blocking FCER2A on B cells resulted in a reduction in the percentage of apoptotic neutrophils, contributing to the deterioration of cardiac remodeling. Our findings unveil a potential cardioprotective role of B cells in MIRI through mechanisms involving FCER2A, neutrophils, and macrophages.


Assuntos
Subpopulações de Linfócitos B , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Neutrófilos/fisiologia , Remodelação Ventricular , Isquemia , Apoptose
7.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(2): 130-137, 2024 Feb 09.
Artigo em Chinês | MEDLINE | ID: mdl-38280732

RESUMO

The concept of homeostatic medicine has helped the researchers to understand the periodontal tissues in a completely new dimension. Periodontal tissues are subjected to complex external environmental stimuli and the internal tissues are continuously undergoing active remodeling. Periodontal regional immunity is continuously activated by local stimuli and interacts with the epithelial barrier, stromal tissue/extracellular matrix, and bone-coupled systems in a complex manner. Together, this complex network shapes the periodontal homeostasis. Under physiological conditions, moderate regional immunity relies on barrier function, intrinsic immune cells to control periodontal microbiota and maintain homeostasis. Under pathological conditions, pathogenic microbiota drive the periodontal homeostasis imbalance through over-activated regional immunity such as neutrophils, helper T (Th) 17 cells and B cells, causing periodontitis. Using the most basic immunological classification as a framework, this paper provides a systematic overview of the above mechanisms by which regional immunity regulates periodontal homeostasis, reviews the translational studies that have been carried out on homeostatic remodeling strategies targeting regional immunity, and proposes a series of periodontal homeostasis medicine research directions worth exploring, as well as potential new targets and strategies for homeostatic remodeling.


Assuntos
Periodontite , Humanos , Periodonto , Neutrófilos/fisiologia , Tecido Conjuntivo , Homeostase/fisiologia
8.
Talanta ; 271: 125672, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295446

RESUMO

Neutrophils play a pivotal role in innate immunity by releasing ROS through respiratory bursts to neutralize various pathogenic factors. However, excessive ROS release can cause tissue damage. Adenosine is an endogenous anti-inflammatory molecule inhibiting respiratory burst to protect the host. Adenosine aptamers with antibody-like properties and good stability are expected to act as adenosine antagonists with functional modulation capability. This study compares the effects of adenosine and its aptamer on the respiratory bursts of salivary polymorphonuclear leukocytes and circulating polymorphonuclear leukocytes using a programmable stopped-flow injection approach, ensuring rapid and efficient analysis while maintaining the neutrophils' viability. The results show that primed salivary polymorphonuclear leukocytes exhibit specificities that differ from circulating polymorphonuclear leukocytes. Adenosine aptamer can function as an inhibitory antagonist that distinguishes between physiologically controlled and excessive priming of neutrophils, showing potential application prospects in immunotherapy.


Assuntos
Neutrófilos , Explosão Respiratória , Neutrófilos/fisiologia , Adenosina/farmacologia , Espécies Reativas de Oxigênio , Anticorpos/farmacologia
9.
J Leukoc Biol ; 115(1): 1-3, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931143

RESUMO

Mechanisms of regulating the beneficial and harmful capabilities of neutrophils include IL-10/IL-10RA signaling in neutrophils that limits clearance of Streptococcus pneumoniae and accumulation of neutrophils in pneumonic lung tissue.


Assuntos
Pneumonia , Streptococcus pneumoniae , Humanos , Neutrófilos/fisiologia , Interleucina-10 , Pulmão
10.
Front Immunol ; 14: 1301183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077317

RESUMO

Studying neutrophils is challenging due to their limited lifespan, inability to proliferate, and resistance to genetic manipulation. Neutrophils can sense various cues, making them susceptible to activation by blood collection techniques, storage conditions, RBC lysis, and the isolation procedure itself. Here we assessed the impact of the five most used methods for neutrophil isolation on neutrophil yield, purity, activation status and responsiveness. We monitored surface markers, reactive oxygen species production, and DNA release as a surrogate for neutrophil extracellular trap (NET) formation. Our results show that neutrophils isolated by negative immunomagnetic selection and density gradient methods, without RBC lysis, resembled untouched neutrophils in whole blood. They were also less activated and more responsive to milder stimuli in functional assays compared to neutrophils obtained using density gradients requiring RBC lysis. Our study highlights the importance of selecting the appropriate method for studying neutrophils, and underscores the need for standardizing isolation protocols to facilitate neutrophil subset characterization and inter-study comparisons.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Neutrófilos/fisiologia , Espécies Reativas de Oxigênio , Morte Celular , Centrifugação com Gradiente de Concentração
12.
J Periodontal Res ; 58(5): 997-1005, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37448100

RESUMO

OBJECTIVE: The study examines how neutrophils cross-talk with macrophages during JP2 Aggregatibacter actinomycetemcomitance infection and factors that are involved in inflammatory resolution and efferocytosis. BACKGROUND: Although sub-gingival bacteria constitute the primary initiating factor in the pathogenesis of molar-incisor pattern periodontitis (MIPP), the non-resolved host response has a major role in tissue destruction. While evidence links neutrophils to MIPP pathogenesis, their clearance during inflammatory resolution, governed by macrophages, is poorly understood. METHODS: Human neutrophils (differentiated from HL60 cells) and macrophages (differentiated from THP1 cells) were inoculated with JP2. The supernatants were collected and exposed to naïve neutrophils or macrophages with or without exposure to JP2. Reactive oxygen species (ROS) were measured with 2'-7'-dichlorofluorescein-diacetate and a fluorescent plate reader. Immunofluorescence labeling of CD47 and cell vitality were examined using flow cytometry. Macrophage polarization was tested by immunofluorescence staining for CD163 and CD68 and a fluorescent microscope, and TNFα and IL-10 secretion was tested using ELISA and RT-PCR. Efferocytosis was examined by pHrodo and carboxyfluorescein succinimidyl ester staining and fluorescent microscopy. In vivo, macrophages were depleted from C57Bl/6 mice and neutrophil CD47 levels were tested using the subcutaneous chamber model. RESULTS: Neutrophils exposed to macrophage supernatant show increased ROS, mainly extracellularly, that increased during JP2 infection. Macrophages showed pro-inflammatory M1 phenotype polarization during JP2 infection, and their supernatants prolonged neutrophil survival by inhibiting CD47 down-expression and reducing neutrophil necrosis and apoptosis. Also, the macrophages delay neutrophil efferocytosis during JP2 infection which, in turn, enhanced JP2 clearance. Depletion of macrophages in mice mildly prevented neutrophils CD47 reduction and reduced JP2 clearance. The JP2 infection in mice also led to macrophage M1 polarization similar to the in vitro results. CONCLUSIONS: As shown in this study, neutrophil efferocytosis potentially may be reduced during JP2 infection, promoting JP2 clearance, which may contribute to the inflammatory-mediated periodontal tissue damage.


Assuntos
Antígeno CD47 , Neutrófilos , Humanos , Camundongos , Animais , Neutrófilos/fisiologia , Aggregatibacter , Espécies Reativas de Oxigênio , Macrófagos , Camundongos Endogâmicos C57BL , Apoptose , Fenótipo
13.
Sci Rep ; 13(1): 11098, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423937

RESUMO

The generation of traction forces by neutrophils regulates many crucial effector functions responsible for host defense, such as attachment, spreading, migration, phagocytosis, and NETosis. The activation state of the cell is a strong determinant of the functional efficacy of the neutrophil; however, the effect of activation on traction force production has not yet been determined experimentally. Previously, the mapping of cellular-generated forces produced by human neutrophils via a Traction Force Microscopy (TFM) method has required a three-dimensional imaging modality to capture out-of-plane forces, such as confocal or multiphoton techniques. A method newly developed in our laboratories can capture out-of-plane forces using only a two-dimensional imaging modality. This novel technique-combined with a topology-based single particle tracking algorithm and finite element method calculations-can construct high spatial frequency three-dimensional traction fields, allowing for traction forces in-plane and out-of-plane to the substrate to now be differentially visualized and quantified with a standard epifluorescence microscope. Here we apply this technology to determine the effect of neutrophil activation on force generation. Sepsis is a systemic inflammatory response that causes dysregulated neutrophil activation in vivo. We found that neutrophils from septic patients produced greater total forces than neutrophils from healthy donors and that the majority of this dysregulation occurred in-plane to the substrate. Ex vivo activation of neutrophils from healthy donors showed differential consequences depending on activation stimuli with mechanosensitive force decreases observed in some cases. These findings demonstrate the feasibility of epifluorescence-based microscopy in mapping traction forces to ask biologically significant questions regarding neutrophil function.


Assuntos
Ativação de Neutrófilo , Tração , Humanos , Microscopia de Força Atômica , Fagocitose , Neutrófilos/fisiologia
14.
J Cell Sci ; 136(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288767

RESUMO

Neutrophils are among the fastest-moving immune cells. Their speed is critical to their function as 'first responder' cells at sites of damage or infection, and it has been postulated that the unique segmented nucleus of neutrophils functions to assist their rapid migration. Here, we tested this hypothesis by imaging primary human neutrophils traversing narrow channels in custom-designed microfluidic devices. Individuals were given an intravenous low dose of endotoxin to elicit recruitment of neutrophils into the blood with a high diversity of nuclear phenotypes, ranging from hypo- to hyper-segmented. Both by cell sorting of neutrophils from the blood using markers that correlate with lobularity and by directly quantifying the migration of neutrophils with distinct lobe numbers, we found that neutrophils with one or two nuclear lobes were significantly slower to traverse narrower channels, compared to neutrophils with more than two nuclear lobes. Thus, our data show that nuclear segmentation in primary human neutrophils provides a speed advantage during migration through confined spaces.


Assuntos
Núcleo Celular , Neutrófilos , Humanos , Neutrófilos/fisiologia , Movimento Celular/fisiologia
16.
Cytometry A ; 103(7): 548-550, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199047

RESUMO

Airway inflammation is a defense mechanism against inhaled agents characterized by infiltration of circulating immune cells. Given the inconsistent cellular identification across pre-clinical rat model, we have developed a flow cytometry panel of six colors to characterize macrophages subsets, lymphocytes and granulocytes in bronchoalveolar lavage fluid (BAL). Rats were challenged with intratracheal instillation of lipopolysaccharide (LPS). BAL were harvested 24 h after one LPS exposure in rats. This flow cytometry panel involve the description of macrophage subsets, T and B lymphocytes and neutrophils, which are central to airway immune responses, as based on scientific literature. By using a relatively small number of parameters to identify multiple cell types, additional parameters can be used for project/disease-specific activation markers.


Assuntos
Lipopolissacarídeos , Pulmão , Ratos , Animais , Líquido da Lavagem Broncoalveolar , Lipopolissacarídeos/farmacologia , Macrófagos , Granulócitos , Linfócitos , Neutrófilos/fisiologia
17.
Curr Cardiol Rep ; 25(7): 631-640, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249739

RESUMO

PURPOSE OF REVIEW: Recent technological advances have identified distinct subpopulations and roles of the cardiac innate immune cells, specifically macrophages and neutrophils. Studies on distinct metabolic pathways of macrophage and neutrophil in cardiac injury are expanding. Here, we elaborate on the roles of cardiac macrophages and neutrophils in concomitance with their metabolism in normal and diseased hearts. RECENT FINDINGS: Single-cell techniques combined with fate mapping have identified the clusters of innate immune cell subpopulations present in the resting and diseased hearts. We are beginning to know about the presence of cardiac resident macrophages and their functions. Resident macrophages perform cardiac homeostatic roles, whereas infiltrating neutrophils and macrophages contribute to tissue damage during cardiac injury with eventual role in repair. Prior studies show that metabolic pathways regulate the phenotypes of the macrophages and neutrophils during cardiac injury. Profiling the metabolism of the innate immune cells, especially of resident macrophages during chronic and acute cardiac diseases, can further the understanding of cardiac immunometabolism.


Assuntos
Traumatismos Cardíacos , Macrófagos , Humanos , Macrófagos/fisiologia , Monócitos/fisiologia , Coração , Neutrófilos/fisiologia , Traumatismos Cardíacos/metabolismo , Imunidade Inata
18.
Nat Commun ; 14(1): 2900, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217480

RESUMO

Skeletal muscle regeneration involves coordinated interactions between different cell types. Injection of platelet-rich plasma is circumstantially considered an aid to muscle repair but whether platelets promote regeneration beyond their role in hemostasis remains unexplored. Here, we find that signaling via platelet-released chemokines is an early event necessary for muscle repair in mice. Platelet depletion reduces the levels of the platelet-secreted neutrophil chemoattractants CXCL5 and CXCL7/PPBP. Consequently, early-phase neutrophil infiltration to injured muscles is impaired whereas later inflammation is exacerbated. Consistent with this model, neutrophil infiltration to injured muscles is compromised in male mice with Cxcl7-knockout platelets. Moreover, neo-angiogenesis and the re-establishment of myofiber size and muscle strength occurs optimally in control mice post-injury but not in Cxcl7ko mice and in neutrophil-depleted mice. Altogether, these findings indicate that platelet-secreted CXCL7 promotes regeneration by recruiting neutrophils to injured muscles, and that this signaling axis could be utilized therapeutically to boost muscle regeneration.


Assuntos
Quimiocinas , Músculo Esquelético , Camundongos , Masculino , Animais , Infiltração de Neutrófilos , Músculo Esquelético/fisiologia , Inflamação , Neutrófilos/fisiologia
19.
Angew Chem Int Ed Engl ; 62(26): e202301625, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099322

RESUMO

NETosis, the peculiar type of neutrophil death, plays important roles in pro-tumorigenic functions and inhibits cancer immunotherapy. Non-invasive real-time imaging is thus imperative for prognosis of cancer immunotherapy yet remains challenging. Herein, we report a Tandem-locked NETosis Reporter 1 (TNR1 ) that activates fluorescence signals only in the presence of both neutrophil elastase (NE) and cathepsin G (CTSG) for the specific imaging of NETosis. In the aspect of molecular design, the sequence of biomarker-specific tandem peptide blocks can largely affect the detection specificity towards NETosis. In live cell imaging, the tandem-locked design allows TNR1 to differentiate NETosis from neutrophil activation, while single-locked reporters fail to do so. The near-infrared signals from activated TNR1 in tumor from living mice were consistent with the intratumoral NETosis levels from histological results. Moreover, the near-infrared signals from activated TNR1 negatively correlated with tumor inhibition effect after immunotherapy, thereby providing prognosis for cancer immunotherapy. Thus, our study not only demonstrates the first sensitive optical reporter for noninvasive monitoring of NETosis levels and evaluation of cancer immunotherapeutic efficacy in tumor-bearing living mice, but also proposes a generic approach for tandem-locked probe design.


Assuntos
Armadilhas Extracelulares , Neoplasias , Animais , Camundongos , Armadilhas Extracelulares/fisiologia , Neutrófilos/fisiologia , Biomarcadores , Corantes , Prognóstico , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
20.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108790

RESUMO

Nosocomial pneumonia is a leading cause of critical illness and mortality among seriously injured trauma patients. However, the link between injury and the development of nosocomial pneumonia is still not well recognized. Our work strongly suggests that mitochondrial damage-associated molecular patterns (mtDAMPs), especially mitochondrial formyl peptides (mtFPs) released by tissue injury, play a significant role in developing nosocomial pneumonia after a serious injury. Polymorphonuclear leukocytes (neutrophils, PMN) migrate toward the injury site by detecting mtFPs through formyl peptide receptor 1 (FPR1) to fight/contain bacterial infection and clean up debris. Activation of FPR1 by mtFPs enables PMN to reach the injury site; however, at the same time it leads to homo- and heterologous desensitization/internalization of chemokine receptors. Thus, PMN are not responsive to secondary infections, including those from bacteria-infected lungs. This may enable a progression of bacterial growth in the lungs and nosocomial pneumonia. We propose that the intratracheal application of exogenously isolated PMN may prevent pneumonia coupled with a serious injury.


Assuntos
Infecção Hospitalar , Pneumonia Associada a Assistência à Saúde , Pneumonia , Humanos , Neutrófilos/fisiologia , Infecção Hospitalar/prevenção & controle , Pneumonia/etiologia , Pulmão , Pneumonia Associada a Assistência à Saúde/prevenção & controle , Peptídeos , Fatores Quimiotáticos , Receptores de Formil Peptídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...